SDSU RadSat

Shaun Heugly, Dalton Williams, Zachariah Fischer, Jamie Lynn Blockey, Trevor Allen
San Diego State University | College of Engineering: Aerospace

Abstract

SDSU RadSat functions as a test bed to allow companies to fly their hardware to a radiation-rich environment and test this equipment’s durability in space. This allows the companies to sell their products as a “Flight Proven” or Technology Readiness Level 9 component. This increases the likelihood that a customer will purchase this component, and in the case of component failure, the manufacturer can redesign without crippling a customer’s satellite.

Mission Objectives

Primary
- Achieve and maintain SSO orbit
- Fully deploy solar arrays
- Receive nominal communication from satellite
- Monitor payload and verify readiness level of components

Secondary
- Ensure payload lasts for the mission’s two-year life span
- Achieve nominal articulation in relation to the sun for max solar efficiency
- Successfully deorbit satellite at end of life

RadSat Overview

- **Deployed Solar Panels**
- **Passive Solar Panels**
- **Payload**
- **Communications**
- **ADCS**
- **OBC**
- **EPS**

Orbit & Attitude Determination

SDSU RadSat will be launched into a circular sun-synchronous orbit 600 km from earth using SpaceX rideshare program. RadSat will utilize three momentum wheels placed along the x, y, and z – axis. A redundant liquid propulsion system will be implemented in RadSat for ADCS, orbit stabilization and deorbit.

Communication

SDSU RadSat will be operating in the S-band frequency range in order to ensure efficient and reliable communications. RadSat will utilize the TDRS system along with the ground station at NASA White Sands. RadSat also possess a contingency mode which orients our antennas down towards the Earth’s surface in the event of our connection with TDRS goes down.

Power

Power is generated by an array of solar panels with 29.5% efficiency with each panel capable of producing 16.31 V in ideal conditions. This power is then stored in two ISIS space iEPS battery packs capable of storing up to 90 Wh of energy for use during eclipse and contingency operations.

Technology Readiness Level (TRL)

- TRL 9: Mission "flight proven" through successful mission operation
- TRL 8: Mission system completed and “flight qualified” through test and demonstration (ground or space)
- TRL 7: Precursor design demonstration in a space environment
- TRL 6: Preceptor design demonstration in a relevant environment (ground or space)
- TRL 5: Component and/or breadboard demonstration in relevant environment
- TRL 4: Component and/or breadboard demonstration in space environment
- TRL 3: Preliminary design and experimental breadboard or proof-of-principle component
- TRL 2: Conceptual design and experimental breadboard or proof-of-principle system
- TRL 1: Ground principles conceived and reported

Radiation Effects

- **Additional Radiation Hazards**
 - Electronic degradation from total ionizing dose
 - Solar array loss power from non-ionizing radiation dose
 - Spacecraft components become radioactive

- **Image Focal Planes**
 - No Pictures
 - During Exposure to Medium-Footprint

- **Additional Space Hazards**
 - Spacecraft charging
 - Micro-meteoroid and debris impacts

Acknowledgements

- Project Advisor: Ahmad Bani Younes, Ph.D.
- Space Micro
- SDSU College of Engineering - Aerospace Engineering Department