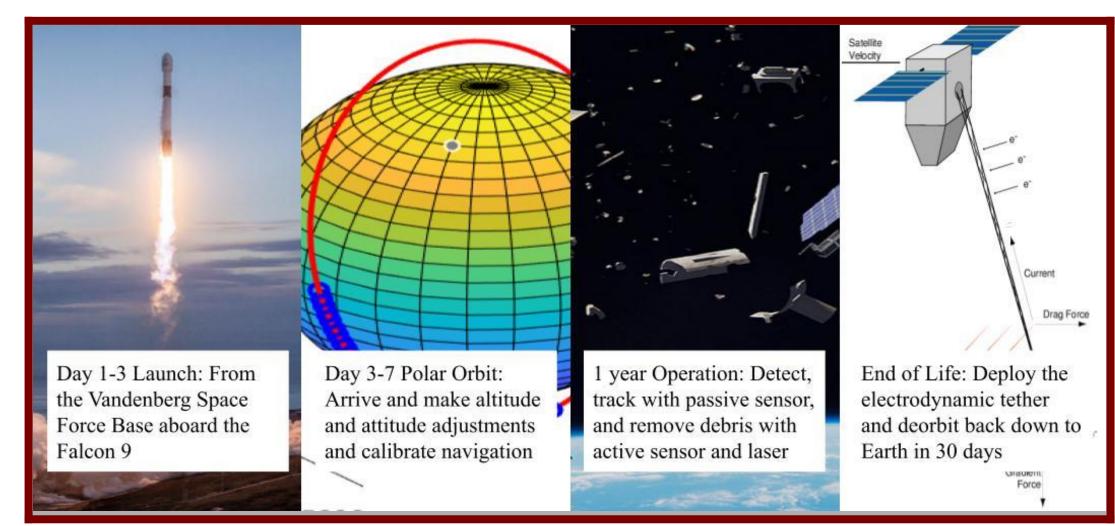


University

Mission Purpose

O.P.O.C.H.T.L.I will monitor and detect small-sized space debris from a size range of 4 centimeters to 10 centimeters. An estimated 500,000 pieces of debris this size exist in Low Earth Orbit (LEO), posing a risk to satellites, launches, and other assets. Using a highpowered laser, this satellite will push the space debris into Earth's atmosphere over Point Nemo. Our primary objective is to monitor and track space debris from a size of 4 centimeters to 10 centimeters. Our secondary objective is to use a high-power pulse laser to send the space debris back down to Earth over Point Nemo.

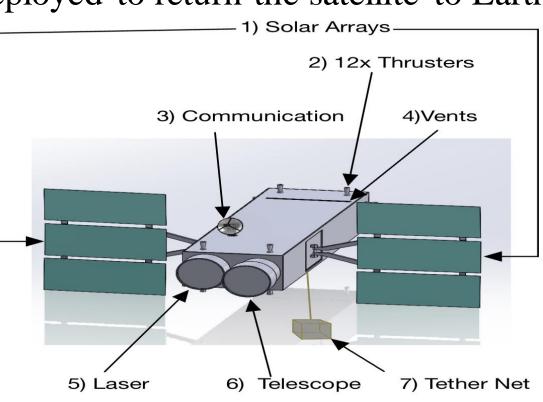

System Breakdown

Component	Mass	Power	Element	Cost
Solar Array	80.56 kg	n/a	Solar Array	31 M
Payload (Laser and Sensors)	4290 kg	21 kW	Detection and Removal	120-150 M
Electrical and Cooling System	1684 kg	15 kW	Operations	3M
Propulsion	613 kg	0.640 kW	Structures and Propulsion	270 M
Retirement	146 kg	0kW	Launch	65 M

Operational Requirements

Requirements		Description
Debris Size	4 - 10 cm	We will be targeting small, hard-to-track debris
Satellite Altitude	560-960 km	This is where the highest concentration of space debris is located
Number of Debris Objects to Remove	100k pieces	Estimated that removing 100k small pieces will have great impact over time
Mission Lifetime	1 year	This gives the satellite time to monitor the debris and then allows for 4-5 months for the debris removal
Satellite Retirement	Orbital inclination below 75 degrees	To use the Electrodynamic tether the orbital inclination must be no higher than 75 degrees

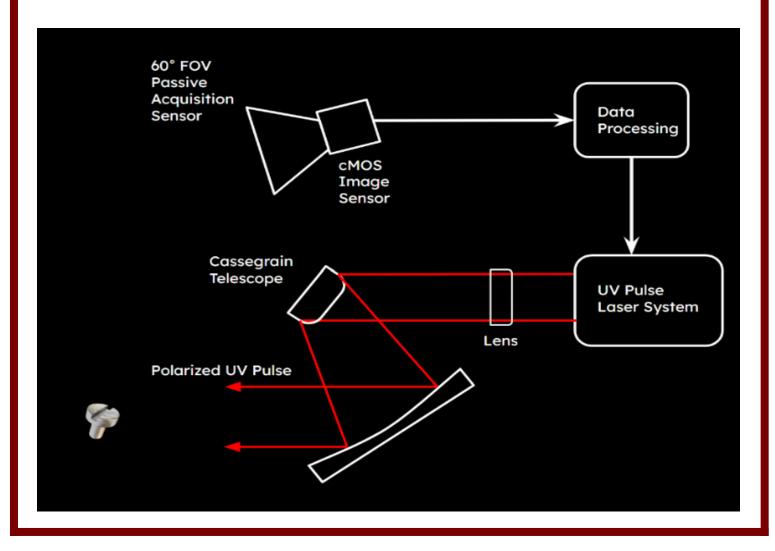
Timeline



O.P.O.C.H.T.L.I SDSU Orbital Pollutant Oriented Clean-Up Helped Through Laser Impulse

Skylar Kinney, Emilio Camarillo, Evan Chase, Juan Cruz, Nathalia Del Callejo, Rylie Hong, Lillian Locken, Rashad Mann, Nicholas **Richards, Alejandro Rivera, Justin Santos Department of Aerospace Engineering San Diego State University**

Satellite


- **Solar Arrays** Generate electrical power from sunlight to provide energy for its operations.
- Thrusters Orient the satellite in the X,Y, and Z direction.
- **Communication** Transmit and receive data signals to communicate with Earth stations.
- **Vents** Regulate internal temperature and pressure.
- Laser Target and shoot small space debris'
- 6. Telescope Track small space debris
- Tether net Electrodynamic tether deployed to return the satellite to Earth

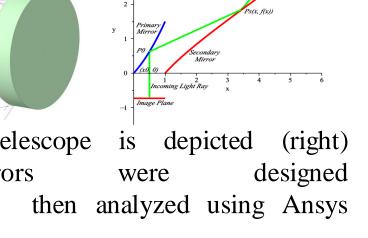
Debris Removal Method

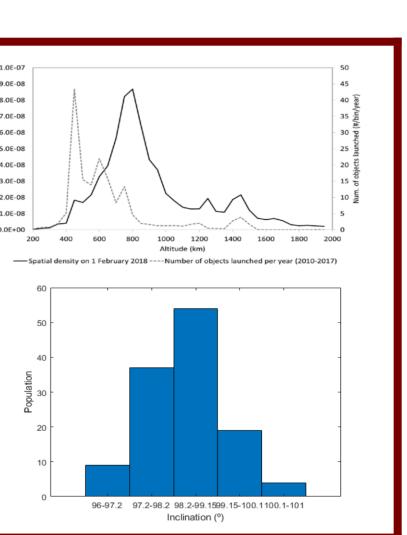
Why a laser? Most cost effective per debris removed. Most effective for dangerous small debris.

How it works: Two sensors: a catadioptric telescope and Cassegrain telescope/laser system. The catadioptric telescope works with cMOS image sensor to detect debris from a distance. The Cassegrain telescope receives debris location and has rotating mirrors which direct UV laser pulse. Momentum transfer causes debris to be pushed towards Earth where they burn up.

Payload Requirements

Active Acquisition Sensor Requirements		Laser Power Requirem	Passive sensor		
Mass Laser System	2500 kg	Output Power (Burst)	21 kW	so system runs Range for both	
Mass Active Mirror	1000 kg	Average Pulse Energy	380 J	reasonable wor mirror diamet	
and Mounting		Pulse Repetition Frequency	56 Hz	on satellite. Las	
Size of Primary Mirror	1.5 m	Passive Acquisition Sensor Requirements		max jitter require	
Range Pointing Accuracy	250 km 0.5 μrad	-	790 kg		
Field of View (FOV)	2 µrad		1.5 m	Catadioptric te	
Wavelength	355 nm (Ultraviolet)		500 km 72 μrad	and mirro mathematically Speos (left).	


Orbit and Debris Tracker


When deciding the orbit, we looked toward the population density of space debris. It was found that most small space debris pieces were found at an altitude of 550 to 1000 km. Additionally, it was also discovered that most of the space debris was found at an inclination between 75 degrees to 90 degrees, which fits the orbital parameters for a polar orbit.

Lastly, we were also looking for an orbit that had sufficent sun coverage to help the laser telescope system detect space debris quickly and more efficiently. By operating in a polar orbit, the satellite can have frequent contact with space debris in LEO.

		_
Orbit Polar Orbit		
Altitude	560 – 960 km	spatial density on 1 February 2018 (#/km ³ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trajectory	60-90° inclination of the equator	1.00 0.06
Number of Space Debris	~100.000	
Detection	Semi major axis:7117 km	
Characteristi	Semi minor axis: 7114.2 km	
CS	Eccentricity: 0.028	
	Inclination: 75°	
	Eclipse duration: 31.8 min	
	Time Period: 99.6 min	

uses sunlight for visualization, ns maintenance during eclipse. sensors is at the minimum for rking time of the laser. Primary ter imposes size restriction aser pointing accuracy imposes a irement for

Communications

To maintain constant communication, the satellite will use two KSAT ground stations, SvalSat in Norway and Trollsat in Antarctica. It was found that having two ground stations was sufficient for having total communication coverage.

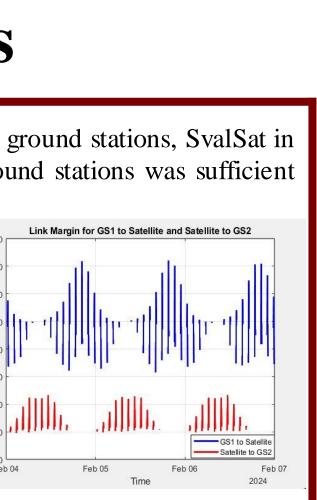
	Frequency	Power	Antenna Diameter	Link Budget	Margin	98) 1) 2) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
KSAT S Band	2.2 GHz	3.0 W	0.2 m	25.9 dB	10.9	프 3(2(1(Fé

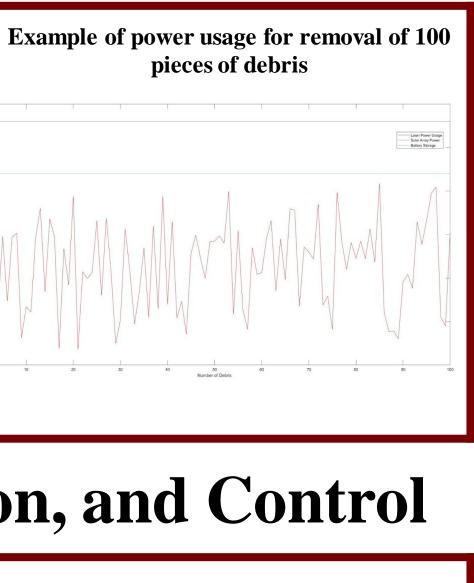

Power

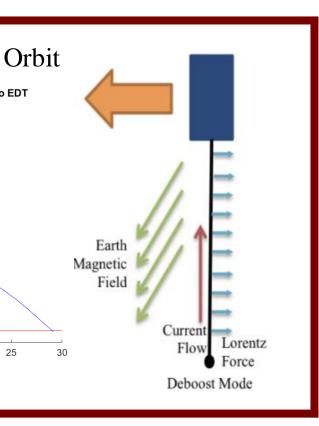
Guidance, Navigation, and Control

The purpose of our Attitude Determination and Control system is to actuate the satellite to its desired orientation. It will utilize a sun sensor and an inertial reaction unit to determine the satellite's orientation. The telescope places a requirement of 0.5 µrad or 0.103 arcsec of pointing accuracy on the ACDS. The gain of the reaction wheels was analyzed to ensure they can overcome the torque caused by gravity and meet this point accuracy requirement

The on-board propulsions systems will be responsible for maintaining the satellite's target orbit as well as providing supplementary control authority for the ACDS. The degeneration of the orbital characteristics of the satellite have been simulated to estimate fuel requirements.


Retirement


Importance: Comply with FCC regulation for satellites in Low Earth Orbit and not contribute to more space clutter Decrease in Orbit Perigee Over Time Due to EDT **Strategy for De-orbit:** Using an Electrodynamic Tether, deorbit the Satellite by extending a 10 km long tether which will deorbit the satellite within 30 days. Why an Electrodynamic Tether? 24x faster deorbit time 80 km Target Perigee No need for reserve fuel to deorbit 15 20 Small mass requirement


Acknowledgements

The Space Debris Clean-Up team would like to thank Dr. Pablo Machuca and the rest of San Diego State's Aerospace Department for their input through this mission design. Likewise, special thanks to Dr. Matthew Anderson from the Physics Department for his help deigning the laser system

Spring 2024