NASA’s Artemis program aims to return to the Moon in the coming years. Various

proposals have been made for permanent bases on the lunar surface. One of the most
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SpaceX Starship, featuring an inflatable section to expand the usable internal volume.
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Requirements

Critical Requirements
» A complete pre-constructed habitat shall be delivered to the lunar surface for long-term habitation as an addition to the Artemis Program.
» The habitat shall be suitable for human habitation by a crew of four.

» The habitat shall be delivered by a single SpaceX Starship currently in development, with accompanying equipment delivered by the

Starship HLS.

High Level Requirements

» The habitat shall be delivered to the Shackleton Crater near the lunar South Pole.

» The habitat shall be a partially inflatable design to increase internal volume.

» The crew shall rendezvous with the Lunar Gateway before proceeding to the lunar surface.
» The mission shall be completed in FY 2030.

Functional Requirements
* The habitat shall not exceed 100 metric tons in mass and 1000 cubic meters in volume when launched.

« The habitat shall include at least 2 airlocks for ingress/egress or as attachment points for future modules.

* The habitat shall be constructed from composite materials to exploit advances in materials science.

« The habitat shall withstand a maximum temperature of 135°C and minimum temperature of -240°C.

« The habitat shall be equipped with electrolysis facilities for oxygen production.

» The crew of the mission shall utilize water-ice harvesting equipment delivered by prior missions to maintain water and oxygen

production.

» This list is not exhaustive, and additional functional requirements exist.

Systems Engineering

Thermal Power Comms Mechanical Propuision ADCS OnBDH
1 > Freq > 5Ghz
Ant: high gain,
Solar: 80kW directional | Open source
generation Amp: high output FS.>2 !Large impulse/ | Real time buffer
Battery. ~60 kWh |over wide range of |> 1.5 GPa yieid control, simple/ | Muitiple fail safes/
Requirements 50>T>50C capacity freq P < 182 psi Thrust > 64800 N |reliable | fall backs
Active: HVAC
Passive: Surface Sband Cylindnical Boosters: Engine
finish, Radiator/ |L: Parabolic reflector |monocoque Al Fuel Oxidzer
Options Louver PV TWTA/ SSPA 3.3 GPa Thrusters 'F prime
- - ——— e - - —
FEMAP:FS.>2
Successful Comm |yield = 3.3 Gpa |Thrust > fanding |
Simulations T between Treq |P ~= Preq C/N = C/Nregq Pmax = 192 psi |weight |Yes | Yes
Req Met/ Not Met?
WRS OGS AFRS
» Recoverable Water is processed through multiple <  Electrolysis-based Oxygen Generation System « HVAC Systems move air through the cabin and
filtration beds, purified, and deionized. » Stored or WRS is fed to the OGS to be converted into several filters and beds.
«  Water is reprocessed until QC determines it is into reactants. Charcoal
potable. «  Sabatier Reactor Es}:ff"yt'c Hog'd 'Z?C;
«  WRScan reliably reclaim 90 percent of sl um - Hydroxide o
y P e » Trace contaminants of human respiration, dust,
recoverable water. . . :
e and other particles are monitored, filtered, and/or
anode (+) cathode (-) captured.

Carbon dioxide is captured behind a molecular
sieve.

Assumptions

HexMesh

Non Structural Mass

Rigid RBE2

Acceleration Loads
1.25 MUF

Model Checks
Free-Free
Unit Displacement
1 g Body

Thermal
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« 80K - 260K
 80.62% illumination
« 200 days of sunlight

Beta cloth with lunar dust

Materials

Requirements:

MLI (beta cloth) Inorganic fireproof silica fiber cloth. Resistant to
long-term degrading space environment
°
Th e r m al p rOteCtIO n fro m rad Iatl 0 n Nextel 312 AF-62 High temperature ceramic oxide yarn, stronger

than aluminum, shock absorber

« Energy/shock absorbent protection
« Pressure and air containment
 Internal protective barrier

Kevlar KM2 Shock/energy absorber, strengthens nextel fabric
Vectran fabric Pressure containment, stronger than steel
Urethane Pressure Bladder Nylon liner, impermeable to air

Aramid Internal Barrier Internal protection

Environmental concerns for material selection:

» Two types of radiation on the moon:
Galactic cosmic radiation
Solar energetic particle event radiation
» Temperatures near the Shackleton Crater ranges from 80 to 260 K

Thermal protection MLI beta cloth Tight weave (d = 0.0004) v
resistant to AO
Useful temp < 204 celsius
v

Energy/shock protection Nextel + Kevlar Yield strength = 3.3 GPa

Pressure/air containment | Vectran + Urethane Can withstand 192 psi.
NASA safety requirement
= 182 psi

Internal protection Aramid fabric No melting point

Power and Communications

Arrays 4 x 20 kW ROSA | 5x 20 kW ROSA | 80 kKW traditional | 100 kW traditional
Max Wattage 60 kW 100 kW 80 kW 100 KW
Mass 2760 kg 3450 kg ~3500 kg ~4400 kg I Link Budger
Component/System Quantity Unit
LSE134 Capacity 60 kKWh 120 kWh 240 kWh 480 kWh 720 kWh Transmitter output power per -30 dBW
Mass ~3640 kg ~7280 kg ~14560 kg ~29120 kg ~43680 kg carrier (p)
Typical Ni-H2 Capacity 60 KWh 120 kWh 240 kWh 480 kWh 720 kWh M‘f]“ple carmer loss 0.3 dB
Mass ~10900 kg ~21800 kg ~43600 kg ~87200 kg ~130800 kg Transmitted carrier power (p:) -34.77 dBW
Transmitting antenna gain (g) 40.6 dB
Received antenna gain (g:) 985.33 dB
N EIRP 1059 dBW
N ree Soace loss (L
\s‘ﬂ Free Space loss (Lgs) 211 dB
' Other loss (L) 5 dB
Total transmission loss -2 dB
Gain over system temperature 923 dB/K
(G/T)
System noise figure (NFs) 10.14 dB
Boltzmann’s constant —228.6 dBJ/K
Received (C/Nor) 555.26 dBHz
Transmitted (C/Ny,) 549.86 dBHz
Margin 0.1 dB

Assembly begins at various

contracted facilities (JPL, July 4th. 2030, 22:23:46 TCG:
Kennedv Space Center July 1st 2030, 16:33:36 _TCG: : S :
y oSp ) Launch from Boga Chica. Start Circularize Maneuver into

Testing begins on components LLO.
during construction

October 15, 2024

Manufacturing Ends

Final structure assembled Testing Completed July 7th. 2030, 22:00:00 TCG ~:
Completed structure testing All major testing completed Start Landing Sequence After
commences January 1, 2030 LLO Orbit For 3 Days.
July 1, 2028

Delta-V’s:

Initial Dry Mass & Fuel Mass 33,862.5kg & 32,215.4kg

Boca Chica> LEO 7.738 km/sec

LEO > Injection 3.12 km/sec

To Leave Earth Orbit 11.2km/sec (7.738+ 3.12=10.858 km/sec)
Injection > Periselene Maneuver 0.991 km/sec

Periselene Maneuver > LLO 1.957 km/sec

Trajectory Overview: Earth-Centered, Satellite Zoomed To, Mission Trajectory.
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